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Abstract

This paper provides the first systematic experimental analysis of delay, com-

munication, and reaction lags in a repeated prisoners’ dilemma with frequent

actions and imperfect monitoring. We independently manipulate delay of in-

formation and the ability of subjects to engage in limited communication and

find that subjects earn significantly more without delay, a result that cannot be

explained by standard repeated games models. We also find that communica-

tion always improves welfare and that average payoffs in one of our treatments

(with communication and no delay) are significantly greater than the upper

bound on public Nash equilibrium payoffs. We explore the possibility that this

is driven by bounded rationality in the form of reaction lags and find that

slowing down the experiment has no significant effect on behavior.
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1 Introduction

Cooperative agreements are often complicated by limitations on how much informa-

tion is available to the parties involved. Firms in an industry attempting to collude,

for example, cannot reliably verify every relevant decision made by their competi-

tors. Likewise, leaders of governments have an imperfect assessment of each other’s

actions. To sustain cooperation, firms form trade associations and heads of state

hold regular meetings to share information and coordinate their actions. How can

efficient outcomes be sustained in such settings? We address this question with a

controlled experiment that assesses the effects of information delay, communication,

and bounded rationality in a repeated prisoners’ dilemma with imperfect monitoring

and frequent actions.

Delay of information is ubiquitous. Company bonuses to CEOs are given on a

yearly basis. The G20 meetings, which from 2008 to 2011 were held on a semi-annual

basis, now take place annually. The Kyoto Protocol, a global initiative to reduce

emissions of greenhouse gases, establishes two commitment periods for the member

countries: 2008-2012 and 2013-2020. A theoretical justification for delay is that it can

help overcome the bounds on welfare imposed by inefficient provision of incentives.

For concreteness, consider a repeated game with imperfect monitoring in which a

noisy public signal of the chosen action profile arrives every period. The monitoring

technology can be such that under public equilibria,1 welfare is bounded away from

efficiency by a substantial amount (Fudenberg et al., 1994; Sannikov and Skrzypacz,

2007). Near efficiency, however, is possible if the signal is delayed, i.e., if players

receive several signals at a time instead of receiving a signal every period. This point

was first made by Lehrer (1989) and Abreu et al. (1991) and has since become a

standard technique in the theoretical literature on repeated games, especially in the

study of both private monitoring and private strategies.2 This literature exploits

the delay of endogenous information: private signals and actions of other players.

Intuitively, without delay, public equilibrium requires that both players are punished

for a “bad” signal in every period it is observed. If the signal is shown every two

periods, punishment can be triggered (with some probability) by two instances of bad

news. Longer delays allow performance to be reviewed more efficiently.

1Intuitively, public equilibrium means behavior only depends on public information. By imperfect

monitoring, past behavior is not public information, so players cannot react to their own past actions.
2See, for instance, Compte (1998); Ely et al. (2005); Hörner and Olszewski (2006); Kandori and

Obara (2006).
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Communication, likewise, is a pervasive element of human interaction, and ex-

periments have shown that it leads to improved welfare and coordination (a review

of this literature can be found in Crawford, 1998). Although most of the theoretical

literature on communication or “cheap talk” (Crawford and Sobel, 1982) emphasizes

limitations to information sharing when incentives are misaligned, the literature con-

cludes that some communication is often better than none at all. In the context of

repeated games, however, subjects’ payoffs are bounded away from efficiency if public

equilibria are played, and this is true irrespective of the ability to communicate.3

We design an experiment around a prisoners’ dilemma game played repeatedly

with imperfect monitoring and frequent actions elapsing at a rate of 0.15 seconds per

period. Because one of our main goals is to see whether players take advantage of

delay, this environment is particularly appropriate. With our chosen parameters, the

efficient level of welfare is 30 and welfare levels above 20 cannot be sustained in public

equilibrium according to standard theory. In the treatments with delay, information

arrives in 100 period blocks, making it possible to sustain welfare levels above 29. A

game with a small number of periods would make the benefits of delay substantially

less stark.

The experiment is described in detail in Section 3, but its basic features are the

following. Subjects are randomly and anonymously matched into groups of two and

earn points depending on the group’s chosen action profile. Instead of observing

the other player’s actions, each subject observes a noisy public signal that has a

positive drift if and only if both matched players cooperate. In the treatment without

delay (treatment N), the public signal is shown in real time. In the treatment with

delay (treatment D), the signal is shown in 100 period (15 second) windows. Two

additional treatments allow subjects to their strategies with (treatment DC) and

without (treatment NC) delay of information.

If actions cannot be changed every period (e.g., because of physical constraints on

3Some papers have explored communication as a useful tool for augmenting the set of equilibrium

outcomes by allowing strategies to depend on the communicated information (e.g., Compte, 1998;

Kandori and Matsushima, 1998; Obara, 2009). Kandori (2003) studies a repeated game with public

monitoring and proves a folk theorem with communication in this environment. Although Kandori’s

result requires more than two players, one can ask if a version of his solution is applicable to our

example. It is shown in Rahman (2013a), however, that a folk theorem in public communication

equilibria requires that the drift when both players defect differs from the drift with unilateral

defection, a condition which is violated by our monitoring technology. The public equilibrium

bound on payoffs persists.
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reaction times), then players observe several signals before making their decisions, and

this bundling together of information makes greater levels of cooperation sustainable

in equilibrium. For example, if it takes players five periods to respond, they can use

a trigger strategy which starts off by cooperating and continues to do so as long as

anything other than five bad signals is observed and defects with some probability

if five bad signals are observed.4 To test whether reaction lags affect behavior, our

experiment includes a slow treatment (treatment S) that is identical to the baseline

no delay, no communication case in all respects by two: a period lasts for a whole

second, rather than 0.15 seconds, and the exchange rate between points and dollars

is adjusted to equalize earnings per unit of time.

Our main results are the following:

Result 1. Delay of information hinders cooperation.

Result 2. Communication improves cooperation, allowing players

to exceed the public equilibrium bound on payoffs.

Result 3. Giving players more time to think about their choices has

no effect on behavior.

The finding that delay leads to a decrease in welfare cannot be explained by

(public) ε-equilibria, where each player is a small distance away from playing a best

response to the other player’s strategy.5 Friedman and Oprea (2012), the first paper

to systematically examine behavior in a continuous time prisoners’ dilemma (with

perfect monitoring), provides a useful reference point for this observation. The paper

finds median cooperation rates above 90% in continuous time and provides a theo-

retical model to explain this data, building on earlier work by Radner (1986) and

Simon and Stinchcombe (1989). Focusing on cut-off strategies K(s) with conditional

cooperation until time s and unconditional defection thereafter, the authors show

that ε-equilibria are consistent with their experiment’s results.

Our results provide a counterpoint to this conclusion. When imperfect monitoring

is introduced in an otherwise similar environment, (public) ε-equilibria cannot explain

4Note that the effect of reaction lags is non-monotonic: If actions are held fixed for a sufficiently

long period of time, less cooperation can be sustained in equilibrium. This complication may be

ignored for our purposes.
5This is because the result that near efficiency can be sustained with delay is robust to small

mistakes.
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the observed behavioral regularities. The heart of Friedman and Oprea’s argument

was that frequent actions permitted players to punish deviations quickly, rendering

them unprofitable. With imperfect monitoring, it takes time to recognize a deviation,

and as a result reacting quickly loses its power. In theory, greater welfare is attainable

with imperfect monitoring if subjects are not able to react quickly. In fact, we find

no significant difference in cooperation rates between our slow (1 period per second)

and fast (6 periods per second) treatment. Arguably, subjects could not react to

information at the rate of 1/6th of a second, so via this form bounded rationality,

their ability to react promptly to deviations was limited more in treatment N than

in treatment S. Nevertheless, cooperation rates were not significantly different.

Thus, since Friedman and Oprea (2012) studied perfect monitoring, deviations

could be detected precisely in their experiment. In our experiment, imperfect moni-

toring made it impossible for players to detect perfectly the behavior of their opponents–

subjects needed repeated observations to make confident judgments regarding their

opponents’ behaviors.

We take the finding that delay of information leads to significant losses in welfare

to be our paper’s main contribution. It has been pointed out that the efficiency gains

associated with delay in Abreu et al. (1991) may in practice be counteracted by the

benefits of receiving frequent feedback (Levin, 2003). In the context of a laboratory

experiment, we find that this is consistent with the evidence. Our results are in

broad agreement with important findings in the industrial organization literature,

which treats communication and information sharing as canonical ways of sustaining

collusion (Feuerstein, 2005). In this line of research, there exist important examples of

collusive institutions that choose not to delay noisy information. The Joint Executive

Committee, a well-known railroad cartel which controlled much of railroad shipment

in late nineteenth century United States, published weekly statistics that allowed

cartel members to check on each other weekly (Ulen, 1980). Indeed, according to

Porter (2005), “the cartel formation process [...] involves more than the issues studied

in the repeated games literature. Dampening the short run incentives to cheat is

only one facet of a cartels problems.” We agree with this assessment and take our

experimental results to point to the following basic fact: Contrary to standard theory,

management of exogenous information can decrease welfare, while an institution that

allows for additional information to be generated endogenously can lead to significant

welfare benefits.

4



2 Related work

2.1 Experimental literature

There is a small but growing experimental literature on repeated games played with

frequent actions. Friedman and Oprea (2012) showed that cooperation rates in a

prisoners’ dilemma are higher when the game is played in quasi-continuous time than

when time is discrete. Bigoni et al. (2011) compared the effects of fixed and random

termination times in the same setting, extending related experiments of Dal Bó (2005)

conducted in discrete time. Oprea et al. (2011) used a continuous “hawk-dave” game

in an experimental test of evolutionary game theory. We follow the basic methodology

established in these studies: An action is assumed to be fixed until changed by the

subject, while payoff stocks are updated every period, which in our case lasts 0.15

seconds.

While subjects observed their partner’s choices in these studies, other experiments,

in both discrete and continuous time, made use of imperfect monitoring. Aoyagi

and Fréchette (2009) showed that welfare decreases in a repeated prisoners’ dilemma

as the public signal becomes more noisy. Ambrus and Greiner (2012) studied the

relationship between welfare and the severity of a punishment technology in a public

good game. Bigoni et al. (2012) found that action frequency has a nonlinear impact

on collusion when payoffs are updated in a quasi-continuous manner and monitoring

is noisy.

Our study is the first to implement imperfect monitoring and information delay in

a theoretically structured manner. Cason and Khan (1999) delayed the announcement

of other subjects’ contributions in a public good game, interpreting information delay

as an imperfect monitoring technology. As pointed out in Aoyagi and Fréchette

(2009), such an interpretation of imperfect monitoring is at odds with the way the

former is construed in theory. Moreover, information aggregation is irrelevant in a

setting without noise.

Our experiment also manipulates subjects’ ability to communicate. The experi-

mental literature on communication is vast and dates back to at least Dawes et al.

(1977). Studies in this line typically find that communication increases cooperation

rates amongst experimental participants. This finding, however, comes with some

qualifications. Charness (2000), for instance, found that “minimalist” communication
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protocols that allow players to announce their strategies are ineffective at improving

cooperation rates in a one shot prisoners’ dilemma. Ben-Ner et al. (2007) found that

numerical messages are much less effective than verbal ones at encouraging trusting

and trustworthy behavior in a trust game. Charness et al. (2012) employed a design

manipulating the subjects’ ability to communicate in a freeform manner and the rate

at which periods elapsed, and found that communication had a much greater effect

on contributions in continuous than in discrete time. This study relates to ours only

loosely. First, it utilizes a setting with perfect monitoring. Second, the communi-

cation technology employed in our study is closer to the “minimalist” protocol of

Charness (2000) or the numerical protocol of Ben-Ner et al. (2007) than the type of

free-form communication employed in Charness et al. (2012).

2.2 Theoretical literature

The theoretical literature on repeated games with frequent actions is also small, recent

and growing. With perfect monitoring, Simon and Stinchcombe (1989) developed an

influential idea for sustaining cooperation in a prisoners’ dilemma with finite horizon,

assuming a form of bounded rationality. Specifically, they assume that players can

only react to their observations with some fixed delay. As actions become arbitrarily

frequent, for any fixed delay in reaction times they show that it is possible to sustain

cooperation in a prisoners’ dilemma—even if the horizon is fixed and finite.

Although Radner (1986) focused on the discrete time case, his results apply6 just

as much to games with frequent actions. He points out the discontinuity in the

equilibrium payoff correspondence from an arbitrarily large but finite horizon to an

infinite horizon, and then offers three different ways of restoring continuity. First,

by introducing reputation, as in the famous “gang of four” papers (e.g., Kreps et al.,

1982), cooperation becomes possible. Second, relaxing the behavioral predictions to

ε-equilibria allows for some cooperation in equilibrium. Third, if players’ strategies

are subject to being “executed” by finite state automata with a fixed upper bound

on their number of states, thencontinuity of the equilibrium payoff correspondence is

again restored with respect to the horizon.

Friedman and Oprea (2012) use these interesting results to understand their exper-

imental results in a theoretically structured manner. They emphasize a combination

6Radner (1986) attributes some of the findings in his paper to others; see his paper for references.
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of ε-equilibrium and delayed reaction as a way of explaining the behavior of subjects

in their experiment. However, none of the arguments mentioned above generalize

immediately to games with imperfect monitoring, and no such extension exists in

the literature. Such a generalization is an interesting open problem that we leave for

future research. On the other hand, our results seem to rule out both ε-equilibrium

and finite automata arguments as drivers for cooperation in the prisoners’ dilemma

with imperfect monitoring: In theory, delay ought to add value even in ε-equilibrium

and regardless of the feasible complexity of a strategy.

The existing literature on repeated games with imperfect monitoring has a long

history by now, perhaps most notably Radner et al. (1986), Abreu et al. (1986, 1990),

Abreu et al. (1991), as well as Fudenberg et al. (1994). Relatively recently, Sannikov

(2007); Sannikov and Skrzypacz (2007, 2010) and Fudenberg and Levine (2007, 2009)

extended these techniques and results to games with both frequent actions and im-

perfect monitoring. A crucial assumption that is made in all of these papers is that

players behave according to (perfect) public Nash equilibrium. This restriction on

the set of equilibria facilitates formal analysis of sustainable payoffs, often with stark

behavioral predictions. For instance, according to Sannikov and Skrzypacz (2007),

collusion is impossible in a repeated Cournot oligopoly with flexible production, and

the amount of cooperation that is sustainable in the prisoners’ dilemma is severely

limited in public Nash equilibrium. This is shown in Proposition 1 below.

There is substantial theoretical precedent for the question of how exogenous de-

lay of information helps players sutain cooperation. Starting from Lehrer (1989) and

Abreu et al. (1991), the idea that players can attain better social outcomes by de-

laying and lumping information into blocks has been widely accepted and applied

in various contexts. Thus, “block” strategies have been used to sustain socially de-

sirable outcomes in Kandori and Matsushima (1998), Compte (1998), Obara (2008),

Ely et al. (2005), Sugaya (2010) and others. Although none of these “cooperative

institutions” survive in repeated games with frequent actions, it can be shown that

even with frequent actions delay can still help (Rahman, 2013b)—at least in theory.

3 Experimental design

All treatments were programmed using zTree (Fischbacher, 2007) and implemented

with a between-group design following all standard practices of experimental eco-
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nomics. The experiment had five treatments, described in detail below. Upon signing

their consent forms, subjects in every treatment obtained a paper copy of the instruc-

tions and were shown a pre-recorded PowerPoint presentation explaining their task.

They then played a two player repeated prisoners’ dilemma with imperfect monitor-

ing and frequent actions through a computerized interface. Appendix B provides the

instructions to the NC treatment.7

In all treatments other than treatment S, a time period lasted ∆t = 0.15 seconds.

At the beginning of each match, subjects chose between pressing an orange button

(“cooperate”) and a purple button (“defect”). After their initial choice, they could

change their selection at any time and as often as they wanted. Not pressing any

buttons during a time period amounted to maintaining their last recorded choice.

Following one practice match, subjects were randomly and anonymously matched

several times. In every period, the probability of a match terminating was 1/700.

Following Murnighan and Roth (1983), we identify the continuation probability with

the discount factor. The first match to end after 45 minutes elapsed since the begin-

ning of the experiment marked the end of a session. If subject were in mid-match

at 50 minutes after the experiment began, we overrode the random termination rule

and terminated the match at a randomly chosen period within the current 100-period

block. Payment consisted of the final payoff from a randomly selected match, con-

verted from points to dollars at the exchange raint of 40 (treatments N and D) or 20

(treatments NC and DC) points per cent.

Depending on whether she chose to cooperate (Cit) or defect (Dit), subject i’s

stock of points increased by uit in period t according to the following table:

C D

C 15, 15 0, 20

D 20, 0 2, 2

Subjects did not find out their earnings until the end of the session, at which

point they received their accumulated earnings
∑
uit(at) from every match. Instead

of observing her partner’s actions, each subject was shown a public signal that could

7The instructions to treatments with delay differ in that the sentence “The process will be

displayed in real time, in blocks of 100 periods” in the “Information” section is replaced by “You will

only observe the evolution of this process at the end of each block of 100 periods.” The instructions

to treatments N and D omit the “Communication” section.
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go up with probability p(at) or down with probability 1−p(at), with p(at) determined

as in the table below:

C D

C 3
4

1
2

D 1
2

1
2

Conditional probability p of the good signal

In treatment N, information arrived continuously, and in treatment D it arrived at

the end of each 100 period (15 second) block, when it was revealed in five three second-

long lumps. In both treatments, points were converted to dollars at an exchange rate

of 40 points per cent. In treatment S, information also arrived continuously, but a

time period lasted for ∆t = 1 second. The continuation probability (discount factor)

was identical to that in the other treatments, but points were converted to dollars at

an exchange rate of 6 points per cent. This ensured that earnings per unit of time

were the same.8 The slow treatment also had 150 (unpaid) periods in the practice

match, compared to 250 in the other treatments. This ensured that the practice

match does not go on for an unnecessarily long length of time, but that the players

still get an opportunity to experience a match with more than one 100-period block.

Treatments NC and DC allowed subjects to communicate cut-off strategies in

an environment without (NC) and with (DC) delay of the public signal. Because

communication made each match longer, we introduced a more generous exchange

rate in these treatments to help smooth out earnings across sessions: 20, rather than

40 points, were converted into a cent. In all treatments of the experiment, subjects

pressed a “continue” button every 100 periods–at the end of each 15 second block.

This block structure was introduced to minimize the difference between the differences

between ways in which information is presented in treatments with and without delay.

Note that it leaves our theoretical predictions unaltered.

The communication in these treatments took place at the beginning of each match,

before subjects took their initial actions, and at the end of each 100 period block. At

the beginning of the match, subjects provided answers to the following questions:

• This block, I will choose ORANGE this percentage of the time: %

8(1/40) cents/point x 15 points/period x (1/.15) periods/second = 2.5 cents/second. To make the

slow world the same, change the exchange rate to ((1/40) x (1/.15)) cents/point x 15 points/period

x 1 period/second = 2.5 cents/second.
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Beginning of match:

Mid-block:

End of block:

Figure 1: Screenshots of the first block in treatment N (no delay, no communication).

In the beginning of each match, a subject selects her initial action (top). She then plays a prisoners’

dilemma game with imperfect monitoring, in which a common signal of the chosen action profile is

observed (middle, bottom). The player is allowed to change her action as often as she desires in the

course of the game (middle). Every 15 seconds, the player presses a “continue” button (bottom),

which erases past signals from the display.
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• If this block’s signal position is [above/below] the number , I will respond

by choosing ORANGE this percentage of the time in the following block: %.

Otherwise, I will choose ORANGE this percentage of the time: %

After everyone submitted their answers and initial actions, subjects saw their part-

ner’s answers displayed on the screen for 30 seconds. When this screen timed out, the

game began to elapse. At the end of each 100 period block, subjects were given an

opportunity to revise their answers. After everyone’s new answers were submitted,

each subject looked their partner’s new answers for 15 seconds before the next block

started.

4 Theoretical predictions

From the point of view of the theory, the modeling choice of imperfect monitoring

with frequent actions is useful for three reasons. First, it is consistent with many

real-world applications. Second, it disciplines the design of institutions considerably

by forcing them to be robust to the friction of a fixed period length by discouraging

infinitesimal deviations.9 Third, it delivers a mathematically tractable analysis of the

problem. We now describe the theoretical considerations relevant to our study.

4.1 Public equilibrium payoffs

The study of public equilibria is practically the norm in repeated games, especially

those with frequent actions. As such, it is important to understand the restriction

that such equilibria impose on equilibrium payoffs. Fortunately, their recursive nature

delivers a simple, partial identification for public equilibria: The maximal payoff

under public equilibria is given by 20 points per period. This claim is proved in the

following proposition, for which Figure 2 provides a graphical illustration.

Proposition 1. Let γ(δ) = max{v1 + v2 : v ∈ E(δ)}, where E(δ) is the set of public

equilibrium payoff vectors of the game with discount factor δ < 1. Then, γ(δ) ≤ 20

for every δ. This bound continues to hold in public communication equilibrium.

9This rules out most of the institutions in the game theory literature, including Abreu et al.

(1991) to Compte (1998), Kandori and Matsushima (1998), Ely et al. (2005), Hörner and Olszewski

(2006), Sugaya (2010) and beyond.
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CC	  

Player	  1’s	  
payoff	  

Player	  2’s	  
payoff	  

DC	  

DD	  

CD	  
bounds	  on	  public	  	  
equilibrium	  payoffs	  

Figure 2: Flow payoffs in the prisoners’ dilemma with two players

Note that Proposition 1 delivers the same theoretical bound for both public Nash

equilibrium and public communication equilibrium. This is due to the particular

choice of information structure in our experiment, where the probability of good

news is the same if there is only one cooperator or none at all. Therefore, the fact

that our treatment with communication exceeded the welfare bound of 20 is not

consistent with public communication equilibrium.

4.2 How information delay can help

The insight that lumping information together may improve incentives is not new,

dating back at least to Lehrer (1989).10 For our purposes, the construction due to

Abreu et al. (1991) is a particularly useful way of describing it.

Suppose that, instead of the signal arriving every period, it was possible to lump

the information in such a way that the signal only arrived at the end of every T -

period block. Abreu et al. (1991) show how players can improve upon a welfare

of 20 by delaying information this way. Consider the following strongly symmetric

strategies, to be called AMP block strategies. Every player cooperates for T periods.

10Lehrer (1989) studied repeated games without discounting, though.
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At the end of the T -period block, the T public signals for each period in the block

arrive to the players. If every signal was bad then continuation play consists of mutual

defection henceforth with some probability α. Otherwise, they continue to cooperate

for the next block with the same contingency.

DD∞

CCT 1−α

αbT

¬bT
CCT

CCT

Figure 3: AMP block strategies (bT = T bad signals)

The probability of T consecutive bad signals equals qT2 in equilibrium, that is,

assuming mutual cooperation throughout the block. A player’s lifetime utility under

this strategy profile is therefore given by

v = (1− δT )15 + δT [(1− qT2 )v + qT2 ((1− α)v + 2α)].

Rearranging,

v = 15− δT

1− δT
qT2 α(v − 2). (4.1)

Discouraging a deviation in the very first period of the block requires that the

utility gained from defecting, (1 − δ)5, be outweighed by the associated loss in con-

tinuation payoff. This is given by the change in probability of punishment from

the one-period deviation, qT−12 (q1 − q2), times the opportunity cost of punishment,

δTα(v − 2). Since q1 − q2 = .25 = q2, this incentive constraint may be written as

(1− δ)5 ≤ δT qT2 α(v − 2). (4.2)

A key insight behind the welfare properties of AMP block strategies is that discourag-

ing one deviation discourages all others, as the next result shows. The intuition for it

is this. The gains from deviating grow linearly, whereas the costs grow exponentially

in the number of deviations. Therefore discouraging one deviation discourages them

all.
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Lemma 1. If the AMP block strategies above discourage a deviation in any single

period of a block then they discourage every deviation, that is, they constitute an

equilibrium.

Consider maximizing v, the strongly symmetric equilibrium payoffs above, with

respect to α such that the AMP block strategies above remain an equilibrium. At an

optimum, the incentive constraint (4.2) must bind, since otherwise by (4.1) we would

be able to feasibly lower α further and increase v, contradicting optimality. If (4.2)

binds then the maximum value of v equals

v = 15− 5
1− δ

1− δT
.

On the other hand, feasibility requires that α ≤ 1, since it is a probability. Sub-

stituting for v and this inequality in (4.2) and rearranging gives

5(1− δ)
[

1

1− δT
+

1

(δq2)T

]
≤ 13. (4.3)

This inequality places a restriction on the exogenous parameters of the game for the

strategy profile above to be an equilibrium. Abreu et al. (1991) used a version of this

bound to argue a result along the following lines.

Proposition 2. For every block length T ∈ N, there exists δ < 1 sufficiently large

that the strategies above constitute an equilibrium. Moreover,

lim
T→∞

lim
δ→1

v = 15.

Note that 15 + 15 > 20. This shows that the public equilibrium bound on payoffs

can be overcome with delay.

4.3 Delay with practical cut-offs

AMP equilibria suffer from the following basic problem: as T grows, the demands

placed on δ for an equilibrium become unreasonable. For instance, if T = 20 (or 3

seconds) then (4.3) requires δ to be so unreasonably close to 1 that interpreting it as

the probability of termination would imply an expected duration of a match to be

more than 1,000 years, using the parameters from our experiment.
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Essentially, the construction by Abreu et al.(1991) is too lenient over when players

are punished. It takes T bad signal realizations to trigger punishment. A less lenient,

but more practical, approach to making use of delay is the following one taken from

Rahman (2013b). If T is large then the distribution of signals is close to normally

distributed by the Central Limit Theorem, and the likelihood that in equilibrium

there will be more than 1
2
T bad signals is relatively low, since the expected number

of bad signals is 1
4
T .11 Therefore, punishment actually occurs relatively infrequently

in equilibrium. Nevertheless, it is still the case that discouraging a single deviation

discourages them all, which helps to establish a Folk Theorem.

Specifically, consider the following strategies, called practical cut-off strategies. As

with AMP block strategies in Section 4.2, players cooperate over a T -period block

with information delay. If the number of bad signals at the end of the block is greater

than 1
2
T , then players choose mutual defection henceforth with some probability α.

Otherwise, they continue to cooperate in the next block, with the same contingent

plan. The only difference between AMP block strategies and practical cut-off strate-

gies is in the number of bad signals that trigger punishment. In the former, this

number is T , whereas in the latter it is 1
2
T . Nevertheless, Rahman (2013b) shows

that these cut-offs lead to efficient outcomes with reasonable discount rates, in con-

trast with the previous objection to AMP block strategies. This shows that—at least

in theory—it is possible for players to substantially improve on the public equilibrium

benchmark of Proposition 1.

4.4 How bounded rationality can help

As noted in the introduction, bounded rationality can also help players overcome the

bound on public equilibrium payoffs. Let τ = 2 denote the number of periods that a

player is unable to change her action, and consider the following strongly symmetric

strategies. Every player cooperates for τ periods. At the end of the τ -period block,

the players consider cooperating if anything other than τ bad signals is observed. If

τ bad signals are observed, the players switch to defection with some probability α.

The probability of 2 consecutive bad signals equals q22 in equilibrium. A player’s

11This cut-off is lower than might be expected from a version of the mechanism proposed by

Kandori and Matsushima (1998) in discrete time, closer to 1
4T , which would not approximate full

cooperation due to a non-vanishing punishment probability.
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lifetime utility under this strategy profile is therefore given by

v = (1− δ2)15 + δ2[(1− q22)v + q22((1− α)v + 2α)].

Rearranging,

v = 15− δ2

1− δ2
q22α(v − 2). (4.4)

Discouraging a deviation requires that the utility gained from defecting, (1−δ2)5,

be outweighed by the associated loss in continuation payoff. Thus, the incentive

constraint is

(1− δ2)5 ≤ q22α(q21 − q22)(v − 2). (4.5)

Consider maximizing v with respect to α such that the trigger strategies above

remain an equilibrium. At an optimum, the incentive constraint (4.5) must bind,

since otherwise by (4.4) we would be able to feasibly lower α further and increase v,

contradicting optimality. If (4.5) binds then the maximum value of v equals

v = 15− 5(
q1
q2

)2
− 1

= 15− 5/3 ≈ 13.33 > 10.

It is easy to check that the feasibility constraint, that is, 0 ≤ α ≤ 1, is satisfied

given the parameters of the experiment.

5 Results

Data was collected from 248 University of Minnesota undergraduate students at the

Anderson Hall Social and Behavioral Sciences Laboratory. Table 1 reports select

summary information.12 To estimate the effect of our treatments on cooperation, we

regressed each subject’s average cooperation rate in non-practice matches13 on three

dummies: Delay (=1 for treatments with delay), Communication (=1 for treatments

with communication) and Slow (=1 for treatment S). The regression was performed

12Notice that treatments N and D had more matches than treatments NC and DC. This is because

communication took up a significant portion of time in the latter treatments, as discussed in Section

3.
13The analysis here is restricted to non-practice matches. We discuss behavior in practice matches

and the dynamics of cooperation below.
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with session-clustered standard errors. The results, presented in the left column of

Table 2, show that delay of information led to lower and communication to higher

cooperation rates.

Delay

∆t=0.15 sec. c=15 sec.

Communication

No

Treatment N Treatment D

6 sessions 3 sessions

N = 64 N = 46

287 matches 169 matches

Yes

Treatment NC Treatment DC

3 sessions 3 sessions

N = 44 N = 52

109 matches 83 matches

No delay

No communication

∆t = 1 sec.

Treatment S

4 sessions

N=42

49 matches

Table 1: Summary statistics of the experimental treatments

While other studies found that communication improves cooperation in games,

our result that delay hinders cooperation is entirely new; it is therefore important

to verify its replicability. We found a similar result in a pilot experiment that we

conducted in the summer of 2013 with a sample size of 66 subjects, where under

different parameters delay has a significantly negative effect on welfare (P < 0.05 with

session-clustered errors). This experiment also had frequent actions and imperfect

monitoring, but subjects observed their own stocks of payoffs, rather than the noisy

signal. In one treatment, the payoff stock was observed in real time, and the second

treatment, it was observed with delay. The payoff stock, however, depended on one’s

own chosen action, the chosen action of the opponent, and noise. We highlight our

first result below:

Result 1. Delay of information hinders cooperation.

The effects of the treatment variables on subjects’ average attained payoffs are

shown in the right column of Table 2. It is apparent the effects on welfare exactly

parallel the effects on cooperation rates described above. The average payoff in

treatments N and DC does not differ significantly from 10 (P -values of 0.742 and

0.937, respectively); the average payoff in treatment D is significantly below 10 (P <

0.01), and the average payoff in treatment NC is significantly above 10 (P < 0.01).

This latter result suggests off-equilibrium behavior, private strategies, or equilibrium

behavior with bounded rationality in treatment NC. We highlight this result below:
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Cooperation Average payoff

Delay -0.102*** -1.251***

(0.0359) (0.440)

Communication 0.111*** 1.405***

(0.0364) (0.444)

Slow -0.0264 -0.315

(0.0392) (0.463)

Constant 0.558**** 9.882****

(0.0288) (0.353)

Observations 248 248

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 2: Treatment effects on subjects’ average cooperation rates and payoffs.

Result 2. Communication improves cooperation, allowing players

to exceed the public equilibrium bound on payoffs.

Subjects’ inability to change their actions in every period of the treatments with

frequent actions raises the question of whether this sort of bounded rationality has an

effect on behavior. That the subjects exceed the bound on public Nash equilibrium

payoffs in treatment NC makes this question all the more salient. We find, however,

that slowing down the experiment has no significant effect on subjects’ cooperation

rates or payoffs (Table 2). In magnitude, the effect of the Slow dummy on individual

cooperation rates is less than 3%, and the attained payoffs levels are virtually the

same. This is our third significant result:

Result 3. Giving players more time to think about their choices has

no effect on behavior.

We also explored the effect of our treatment variables on mutual cooperation rates.

To this end, we created three variables for each of the 697 matches in the dataset:

percentage of time spent in action profile (C,C), percentage of time spent in action

profile (C,D) or (D,C), and percentage of time spent in action profile (D,D,). These

profiles of cooperation rates are plotted for different treatments in Figure 4. In the
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.1
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0
.1

.2
.3

.4
.5

No delay With delay No delay With delay

No delay With delay

No communication, Fast No communication, Slow

With communication, Fast

Mutual cooperation
Unilateral cooperation
Mutual defection

(C,C) (C,D) or (D,C) (D,D)

Delay -0.0889** 0.0293 0.0596*

(0.0419) (0.0271) (0.0329)

Communication 0.154*** -0.0488 -0.105***

(0.0491) (0.0309) (0.0280)

Slow 0.0224 -0.0257 0.00331

(0.0527) (0.0323) (0.0242)

Constant 0.327**** 0.434**** 0.239****

(0.0378) (0.0210) (0.0203)

Observations 697 697 697

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Figure 4: Treatment effects on subjects’ mutual cooperation rates.
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bottom part of the figure, we report the results of regressions in which these variables

are regressed against the treatment dummies. Delay made mutual cooperation less

likely (P < 0.05) and mutual defection more likely (P < 0.1). Communication

had the reverse effect, increasing mutual cooperation (P < 0.01) and decreasing

mutual defection (P < 0.01). Interestingly, neither of these variables had an effect

on unilateral cooperation rates. In the slow treatment, the profile of cooperation did

not significantly differ from that in the baseline treatment (N), providing additional

evidence for Result 3 above.

5.1 Dynamics

To study the dynamics of cooperation in the experiment, we changed the unit of

analysis to average cooperation rate per block and re-ran the regression reported

in Table 2 for all blocks and matches, including practice matches. We included a

practice dummy, a block number variable (1 for the first 100 periods, 2 for the next

100 periods, etc.), and a match number variable. The results of this regression and an

analogous regression in which the dependent variable is the subject’s average payoff

per block are reported in the left-most two columns of Table 3. Subjects cooperated

significantly more often in the practice matches (P < 0.05), but the match and

block dummies failed to reach significance. The average per-block cooperation rate in

practice matches was approximately 65%, while the average in non-practice matches

was approximately 55%.

We also re-ran the regressions reported in Table 2 for the practice matches. The

results of these regressions are shown in the right-most two columns of Table 3.

Unlike Table 2, Table 3 shows none of the treatment dummies as significant. I.e.,

subjects sustained comparably high cooperation rates and welfare levels in every

treatment of the practice matches. Even in the slow treatment, where average payoffs

above 10 cannot be sustained in public equilibrium with or without response time

constraints,14 we find that the average attained welfare level is significantly higher

than 10 (mean=10.87, P < 0.05, session-robust standard errors). We summarize the

findings described above as follows:

Result 4. There are significant differences in behavior between

14In this treatment, periods proceed at a slow enough rate that subjects can physically respond

in every period.
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All data Practice data

Cooperation Average payoff Cooperation Average payoff

(per block) (per block) (per subject) (per subject)

Delay -0.0861** -2.092** -0.0373 -0.409

(0.0312) (0.777) (0.0538) (0.651)

Communication 0.0936*** 2.302*** 0.0590 0.583

(0.0323) (0.785) (0.0542) (0.655)

Slow -0.0409 -1.021 -0.00979 -0.203

(0.0346) (0.815) (0.0353) (0.443)

Practice 0.0634** 1.554**

(0.0260) (0.661)

Match -0.00548 -0.140

(0.00352) (0.0866)

Block -0.000817 -0.0267

(0.00118) (0.0291)

Constant 0.595**** 20.76**** 0.648**** 11.08****

(0.0300) (0.743) (0.0315) (0.386)

Observations 9674 4837 248 248

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 3: Dynamics of cooperation in the experiment. There was significantly more cooperation in

practice than in paid matches, but little learning once the paid matches start (left column). In the

practice matches, none of the experimental treatments affected cooperation rates (right column).
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practice and paid matches (and evidence of off-equilibrium behavior

in practice matches), but little learning once the paid matches start.

To explore the dynamics of cooperation further, we examined whether what hap-

pens in the very first period of the match explains what happens in the rest of the

match. To this end, we controlled for the subjects’ chosen profile of cooperation in the

regressions reported in Figure 4 by introducing two dummy variables: a mutual co-

operation dummy (=1 if the players chose (C,C) in the first period of the match) and

a unilateral cooperation dummy (=1 if the players chosen (C,D) or (D,C) in the first

period of the match). The results are shown in Table 4. Both of the new variables

have highly significant coefficients. Moreover, the effect of delay loses significance

both when mutual cooperation in the match (P = 0.202) and mutual defection in the

match (P = 0.595) are dependent variables. The effect of communication remains

significant but falls in magnitude, from 15.4% to to 9.13% when the percentage of

match spent in mutual cooperation is the dependent variable, and from -10.5% to

-6.53% when the dependent variable is mutual defection. Thus, first period profiles

of cooperation largely explain the effects of the treatment variables. We highlight

this result below:

Result 5. The effect of delay (communication) on cooperation in

the course on the match is largely (partially) explained by differ-

ences in first period profiles of cooperation.

5.2 Strategies

We next looked at how subjects’ behavior depended on the realized public signals. We

averaged actions taken in each period (1-100) across all sessions, matches and blocks,

taking into account the evolution of the public signal in the previous block. The

average cooperation rates following blocks with different numbers of good news are

plotted in Figure 5. This figure makes apparent a number of behavioral regularities.

First, it suggests that subjects cooperate more in blocks that follow blocks with

high realizations of the public signal, and that this is true for treatments with and

without delay. The figure obscures the effect of the public signal, however, because

past realizations of the signal are related to past cooperation rates. We therefore ran

regressions in which a subject’s cooperation rate in block b was regressed against the

public signal at the end of block b− 1, using the partner’s cooperation rate in block
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(C,C) (C,D) or (D,C) (D,D)

Delay -0.0435 0.0281 0.0154

(0.0330) (0.0226) (0.0286)

Communication 0.0913** -0.0260 -0.0653***

(0.0336) (0.0244) (0.0213)

Slow 0.0325 -0.0381 0.00564

(0.0800) (0.0486) (0.0355)

(C,C) in first period 0.414**** 0.0396 -0.453****

(0.0380) (0.0400) (0.0513)

(C,D) or (D,C) in first period 0.0761*** 0.255**** -0.331****

(0.0218) (0.0393) (0.0486)

Constant 0.124*** 0.297**** 0.579****

(0.0377) (0.0356) (0.0488)

Observations 697 697 697

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 4: The action profile chosen by the players in the beginning of the match had a significant

effect on the average action profile in the match. Note that the effect of the delay variable loses

significance when players’ first period choices are controlled for.
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Figure 5: Behavior and the public signal. Each bar in plots average cooperation in rates in periods

1-100 of the block, with period number on the horizontal axis. Colors code the variable z, defined

as the number of good news less the number of bad news received in the previous block.

b− 1 as in instrument. Specifically, the model we estimated was

aib = βzi,b−1 + αi + εib,

where aib is subject i’s average cooperation rate in block b and zi,b−1 is the number

of good news minus the number of bad news observed in the previous block b − 1.

Because εib may be related to ai,b−1, which is strongly correlated with zi,b−1, there is

a potential endogeneity issue. To address it, we used a−i,b−1, the cooperation rate of

i’s partner in block b − 1, as an instrument for zi,b−1. Because i never observes her

partner’s actions except through the public signal, the instrument is valid.

We ran these regressions separately for every treatment, including subject fixed

effects as covariates, and clustering the standard errors by session. The results are

shown in Table 5. Once past cooperation rates are controlled for, we find that past re-

alizations of the signal have highly significant positive effects on behavior (P < 0.001)

in every treatment without communication, and in the treatment with communica-

tion and no delay. The positive and highly significant relationship between signals

and behavior constitutes our sixth major finding:
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Treatment N D S

Prev. block signals 0.00477**** 0.00530**** 0.00154****

(0.000631) (0.000590) (0.000388)

Observations 2994 1776 362

Treatment NC DC

Prev. block signals 0.00316**** 0.00114

(0.000756) (0.00249)

Observations 676 810

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 5: Behavior and signals received in the previous 100-period block. The partner’s cooperation

rate in the previous block is used as an instrument for previous block’s final signal position. The

first stage F-statistics in these regressions range from 151.346 to 2389.576.

Result 6. Subjects provide each other with incentives by cooperat-

ing more after receiving good news.

Note that the coefficient on the signal variable is almost two times smaller in mag-

nitude in the treatments with communication. This suggests that when the subjects

are able to communicate, they rely on old signals less, and that the messages have

informational content. To confirm this, we looked at correlations between what the

subjects communicated and how they behaved. For the 96 subjects who participated

in the treatments with communication, the average promised cooperation rate in the

non-practice matches was approximately 63% (promises averaged across blocks for

each subject). The actual cooperation rate, in comparison, was approximately 69%.

The correlation between promised and actual cooperation rates is strong and highly

significant (correlation coefficient of .6214, P < 0.001). We interpret this as strong

evidence that the messages in our data relate to behavior:

Result 7. The messages have informational content.
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5.3 Periodicity of behavior

Figure 5 also suggests that behavior in treatments without delay has a highly periodic

nature: regardless of the number of good signals observed in the previous block,

subjects in these treatments are more likely to defect in the late periods of each block

than they are in the early ones. This can also be seen in Figure 6, which aggregates

the data for different past realizations of the public signal and plots the per-period

cooperation rates for different treatments. Cooperation in these treatments is periodic

with and without communication (top panel), with no clear time trend across blocks

(bottom panel). Remarkably, cooperation rates in the slow treatment increase at

about the same rate (per period) as they do in the fast treatments without delay,

and then follow a similar gradual decline.

Result 8. Blocks in treatments without delay exhibit a striking

periodicity in behavior.

Note that the slope of the within-block trend is different in treatments with and

without communication. Without communication, cooperation declines at a constant

slope. With communication, it stays at a high level for a longer period of time,

and then declines steeply. This observation sheds light on some of the dynamics

of cooperation described above. Recall that the first period cooperation profile can

explain most of the treatment effect of delay, but that the effect of communication

remains significant even when the first period cooperation profile is controlled for.

That cooperation declines faster without communication provides one avenue for a

within block (and hence within-match) effect of the communication treatment.

One interpretation of this observed periodicity in behavior is that it reflects a focal

point introduced by our design, which divides the match into 100-period blocks. This

focal point may influence subjects to coordinate on mutual cooperation around the

beginning of each block. Intuitively, a break (like a postman knocking on the door

of a couple that is fighting) distracts the subjects, thereby restoring initial levels of

cooperation. However, because behavior is not periodic in treatments with delay, this

explanation is problematic.

An arguably more plausible interpretation is that players observe signals and

choose their level of cooperation on the basis of the progress of the signal. For

instance, suppose that in equilibrium the drift of the signal is fixed at some level while

players are in a cooperative phase. As soon as the Brownian motion passes through a
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(b) First seven blocks of the average match

Figure 6: Periodicity of behavior. The top panels plot data averaged across all blocks and matches.

In treatments without delay, cooperation rates start out high, decline over time, and refresh at the

beginning of the next 100 period block. The decline in cooperation is faster for treatments without

communication. No periodicity of behavior is observed in the treatments with delay. Behavior in

the slow treatment follows the same pattern as behavior in the treatment with frequent actions and

no communication.
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Figure 7: Illustration of strategies with first passage times determining switches in cooperation

rates. The parameter ` describes the amount of leeway a player gives to the public signal before

switching from a cooperative regime to a more defective regime.

window of some length ` from this drift, players move to a punishment phase for the

rest of the block, and then restart their strategy in the next block, perhaps updating

` on the basis of the length of time it took for the Brownian motion to escape the

previous cutoff in the last period. See Figure 7. Assuming a common threshold `

across matches and subjects, the density f of first passage times would take the form

f(t) =
`√

2πt3
exp

(
−`

2

2t

)
.

Under this model, the rate of cooperation decreases gradually over time, in line

with the experimental results of Figure 6(a) without delay. (The initial increase in

cooperation rates in the fast treatments is likely due to subjects reacting relatively

slowly to adjusting their action from the end of the previous block.) Of course, a

richer model of passage times and cutoff strategies can be used to fit the data precisely

by fitting an appropriate inverse Gaussian distribution to average cooperation rates

and allowing for variation in thresholds `.
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6 Discussion

Our experiment provides the first systematic treatment of delay, communication, and

reaction lags in a repeated game with frequent actions and imperfect monitoring.

The results draw attention to several discrepancies with standard theory. The first

finding is that delay unambiguously hurt subjects. This is at odds with the Abreu

et al. (1991) argument that information delay can substantially help players to re-

duce the likelihood of inefficient punishments. The argument is robust—it holds in

games with frequent and infrequent actions, with unbounded patience, even in ap-

proximate equilibrium, which makes the empirical finding all the more puzzling. One

explanation of it is that delay makes it more difficult for subjects to learn the kind

of opponent they are facing. Intuitively, if subjects face too much uncertainty over

their opponents’ planned behavior, then it may be difficult to justify cooperating with

them. The absence of delay may help players to signal their intended behavior more

effectively.

Our second finding is that communication unambiguously helps subjects. Al-

though it is well known in the experimental literature that communication generally

improves welfare in a wide variety of strategic contexts, there is no strong theoretical

justification for it adding (or subtracting) value in our experiment, unless—again—it

helps to reduce subjects’ uncertainty over their opponents’ intentions. This suggests

several sources of possible gains from reducing uncertainty over opponents’ strategies.

First, it may motivate a subject to cooperate more if she is more confident that her

opponent is likely to cooperate in return. Second, it may be easier to give incentives

for cooperation to opponents if they can be made better aware of the consequences

of their defection. In treatments with communication, where subjects announce their

contingent plans at the beginning of every block, both of these channels should be

facilitated—at least somewhat–and we find this to be the case. Subjects use messages

to inform their opponents of future strategies, and reported and actual behaviors are

significantly aligned.

We also find little evidence that reaction lags affect behavior in our experiment.

This is a notable observation in light of the experiments reported in Friedman and

Oprea (2012), where cooperation rates increase monotonically as players are given

the opportunity to respond more quickly. Friedman and Oprea (2012) argued that

response lags prevent players from quickly punishing deviations and that the gains to

shorter lags are monotonic. Crucially, this argument only makes sense with perfect
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monitoring. In an environment like ours where information is noisy, reaction lags may

allow players to gain a better idea of whether their partners are being cooperative,

thereby supporting more efficient equilibria. We find, however, that cooperation does

not seem to be affected in practice by how much time a player has to respond to a

signal.

Our instrumental variable-based estimation shows that subjects behavior is driven

by observations of the public signal. Using an opponent’s strategic behavior as an

instrument is justified by the assumption that subjects play mixed strategies. As a

result, conditional on the public signal, random changes in a subject’s behavior must

be mutually independent. Since the coefficient on the public signal is estimated with

an instrument, it is unbiased regardless of other omitted variables. If there are no

omitted variables, then the regression equation is consistent with a first-order ap-

proximation of public strategies. Of course, if we assume that subjects’ behavior is

consistent with equilibrium, then players must be playing public equilibria. From

a practical point of view, public equilibrium makes testable restrictions on feasible

outcomes, such as the welfare bound of Proposition 1. However, our treatment with

communication implies that the public equilibrium bound is violated. This could be

for several reasons. First, it could be that subjects simply do not play equilibrium

strategies. However, if the equilibrium assumption is dropped then it is not clear what

structural predictions can be made. Secondly, it could be that their bounded ratio-

nality means that they are incapable of playing public equilibria, as they cannot react

immediately to an individual bad news event. This may improve welfare, as illus-

trated in Section 4.4. However, it is not clear why players would exploit this bounded

rationality in treatments with communication in order to exceed the public equilib-

rium bound but not in those without. Thirdly, subjects may be playing private—not

public—strategies. From a technical point of view, public equilibrium is an assump-

tion that often puts severe restrictions on behavior. That is, it precludes players

from certain behavior that may be intuitively justified in some contexts. Rahman

(2012, 2013a) explores this issue at some length and argues that public equilibria pre-

clude secret monitoring and infrequent coordination amongst players. Both of these

behaviors have the potential to improve their welfare significantly, so much so that

the impossibility results of Sannikov and Skrzypacz (2007, 2010) can be completely

overturned. Our interest in future work is to explore experimentally how infrequent

coordination can help sustain cooperation in the laboratory.
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A Proofs

Proof of Proposition 1. The proof follows a basic argument by Fudenberg et al.

(1994). For a contradiction, assume that γ > 20. Choose v ∈ E(δ) such that

v1 + v2 = γ. Player i’s utility is given by

vi = (1− δ)ui + δ(pw+
i + qw−i ),

where w+
i and w−i denote the continuation payoffs of player i after a good and a bad

signal, respectively, ui is player i’s expected utility today and p and q are, respectively,

the probabilities of a good and a bad signal today. Since γ > 20, it must be the

case that the probability of both players cooperating is greater than zero after some

history. Let µj, where j 6= i, denote player j’s probability of defection. It will be

incentive compatible for player i to cooperate if

(1− δ)(1− µj)15 + δ
[(

(1− µj)p2 + µjp1)
)
w+
i +

(
(1− µj)q2 + µjq1)

)
w−i
]

≥

(1− δ)
(
(1− µj)20 + 2µj

)
+ δ
[(

(1− µj)p1 + µjp0)
)
w+
i +

(
(1− µj)q1 + µjq0)

)
w−i
]
.

Write ∆p = (1− µj)(p2 − p1) + µj(p1 − p0). Rearranging yields:

(1− δ)[5(1− µj) + 2µj] ≤ δ∆p(w+
i − w−i ),

that is, current utility gains from deviating are outweighed future losses in continu-

ation payoffs. Since p2 − p1 = 1/4 and p1 = p0, this inequality yields the following

upper bound on w−i :

w−i ≤ w+
i −

1− δ
δ

5(1− µj) + 2µj
∆p

= w+
i −

1− δ
δ

5(1− µj) + 2µj
(1− µj)/4

≤ w+
i − 20

1− δ
δ

Substituting into the previous expression for vi,

vi ≤ (1− δ)ui + δ

[
w+
i − 20q

1− δ
δ

]
.

Therefore,

v1 + v2 ≤ (1− δ) [30− 40q] + δγ.

Since q ≥ 0.25 and v1 + v2 = γ by hypothesis, it follows that γ ≤ 20, as claimed.

Finally, a proof that the bound remains in public communication equilibrium can

be found in Rahman (2013a, Lemma 1). �
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Proof of Lemma 1. Assume that (4.2) holds. If a player chooses to deviate

for τ periods, the utility gained from such a deviation is clearly bounded above

by (1 − δ)5τ , since this bound ignores discounting of future deviation gains. In

other words, deviation gains are linear in the number of deviations. On the other

hand, punishment costs grow exponentially in the number of deviations. Indeed, the

opportunity cost of punishment remains δTα(v − 2), but the change in punishment

probability from τ deviations becomes

qT−τ2 (qτ1 − qτ2 ) = qT2

[(
q1
q2

)τ
− 1

]
,

which, since q1 > q2, clearly grows exponentially with τ . Now, by the Binomial

Theorem, (q1/q2)
τ − 1 ≥ τ [(q1/q2)− 1] = τ , so the change in punishment probability

is bounded below by qT2 τ . Therefore, the following inequality implies that τ deviations

are discouraged:

(1− δ)5τ ≤ δT qT2 τα(v − 2).

But this is just (4.2). The claim now follows because τ was arbitrary. �

Proof of Proposition 2. Fix T ∈ N. As δ → 1, the left-hand side of (4.3) tends

to 1/T by l’Hopital’s rule, which is less than or equal to 1. Hence, there exists δ < 1

sufficiently large that (4.3) holds, so the candidate equilibrium strategies above are

indeed an equilibrium. Finally, by l’Hopital’s rule, it follows that

v → 15− 5
1

T
as δ → 1.

Finally, it is now clear that v → 15 as T →∞, as claimed. �
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Instructions 

 

Welcome and thank you for participating in the following experiment on strategic 

decision-making. This document explains what the experiment will entail. First, notice 

that your show-up fee that is paid separately and is not affected in any way by the 

outcome of the experiment. 

Timing and Payoffs 
 

You will be randomly and anonymously matched to another subject several times. Each 

time you are matched to a subject will be called a “match.” During each match, you will 

interact with the other subject to whom you are matched through a computer program as 

described below. You will have the opportunity to earn money depending on the 

decisions made by you and this other subject.  

 

In the beginning of a match, you will see on the bottom of your computer screen an 

orange button and a purple button. At any time, you will have the choice of selecting 

either color by clicking on the corresponding button with the computer’s cursor, using 

your mouse. The image below shows what your computer screen will look like before 

you make your first choice. 

 

 

 

 
 

Initial screen prior to making first choice 

B Instructions to treatment NC
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Once you and the other subject have selected an initial color, periods will start elapsing 

with a duration of 0.15 seconds per period. You can change your selection at any time 

and as often as you want by selecting the corresponding button; so can the other subject 

to whom you are matched. The computer program will register your changes every 

period. Thus, in 15 seconds the program will register one hundred choices. Unless and 

until you change your choice, your assumed choice for a given period will be the last 

choice you made. For example, if you select orange by clicking on the orange rectangle 

on the screen with your mouse and then change to purple 5 seconds later by clicking on 

the purple rectangle with your mouse then the computer will register that you chose 

orange during the time between clicking orange and purple. 

 

Your monetary payoff at the end of the experiment depends both on your color choices 

and those of the other subjects to whom you were matched. Every period, if you chose 

orange and the other subject chose orange, too, then you will each earn 15 points. If you 

chose orange and the other subject chose purple then you will earn zero points and the 

other subject will earn 20 points. If you chose purple and the other subject chose orange 

then you will earn 20 points and the other subject will earn zero points. Finally, if both 

you and the other subject chose purple then you will each earn 2 points. Your final payoff 

is the accumulation of all your points in all your matches. Points will be exchanged for 

money at the rate of forty (40) points per cent, or 1000 points per 25 cents. The table 

below summarizes this information. 

 

  Other’s choice 

  Orange Purple 

Your choice 
Orange  15 points for you 

15 points for other 

0 points for you 

20 points for other 

Purple 20 points for you 

0 points for other 

2 points for you 

2 points for other 

 

Average points per period depending on each subject’s choices 

 

To illustrate, consider the following example. If you and the other subject to whom you 

are matched both chose orange for 100 periods, then you would earn 15 x 100 = 1,500 

points, translating into 1,500 x 1/40 = 37.5 cents. If you chose purple and the other 

subject chose orange in every period, you would earn a total of 20 x 100 = 2,000 points, 

which would translate into 2,000 x 1/40 = 50 cents. If you both chose purple, then you 

would earn 2 x 100 = 200 points, translating into 200 x 1/40 = 5 cents.  

 

The number of periods in a match is selected as follows. Every period, a random process 

determines whether the match continues on to the next period. The continuation 

probability is held constant, so that the average duration of a match is 700 periods. 

Because termination is random, some matches will last longer than 700 periods and 

others will last less than that. As soon as a match ends, every subject will be randomly 

and anonymously re-matched with another subject. You will be re-matched several times. 

Your final payoff will consist of the accumulation of your payoffs across all matches.  
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Information 
 

Throughout a match, you will observe neither your payoff, nor the other subject’s payoff, 

nor the other subject’s choices. Similarly, the other subject will observe neither his or her 

payoff, nor your payoff, nor your choices. You and the other subject will observe the 

outcome of a random signal process, graphically depicted on the left-hand side of your 

computer screen. The graph of the process will depend on your color selection, the other 

subject’s selection, and an element of randomness, as follows.  

 

Every period, the value of the signal process will either increase or decrease by one unit. 

If you and the other subject both chose orange, the value of the process will increase with 

75% probability and decrease with 25% probability. Otherwise, if one or both of you 

chose purple then the process will increase and decrease with 50% probability. 

 

The process will be displayed in real time, in blocks of 100 periods. On the top-right 

region of the screen there will be displayed the fraction of periods during which you 

chose orange in the current block as well as the position of the process, defined as the 

number of time it actually increased minus the number of times it actually decreased in 

the current block. If you and the other subject always chose orange, then, at the end of a 

block, the process will reach a position of around 50 on average. If one or both subjects 

always chose purple then, at the end of a block, the process will reach a position of 

around 0 on average. However, this score fluctuates randomly, and can in principle end 

up far away from these values. At the end of each block, a red “continue” button will 

appear at the bottom of the screen. You may press the button when you are ready to move 

on to the next block. There will be two practice blocks at the start to gain familiarity with 

the process. 

 

To illustrate, see the figures below with possible paths of your earnings over time when 
you and the other subject make different color choices. Figure 1 below depicts possible 

paths of the signal process during two consecutive blocks given that both you and the 

other subject chose orange. The process starts at zero at the beginning of every block. 

The horizontal graph lines count 20 units of the process increasing or decreasing and the 

ticker line in the middle denotes the starting point of the signal. In this instance, the signal 

position exhibited a net rise of 50 units in the first block, followed by a rise of 46.  
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Figure 1: Possible path of the signal if both of you chose orange throughout 
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Figure 2: Possible path of the signal if one or both of you chose purple throughout 

 

 
 

Figure 2 above depicts possible paths of the signal process for two consecutive blocks 

given that you chose purple and the other subject orange. In this instance, the signal 

position dropped 6 units in the first block, followed by a drop of 4 units in the next block.  
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Figure 3 below depicts the possible path of the signal process during a single block given 

that the other subject chose orange throughout the block and you switched from orange to 

purple halfway through the block. 

 

 

Figure 3: Possible path of the signal if you switch from orange to purple after 48 periods 

 

 

 

Communication 
 

In addition to observing the signal process, you will be able to send messages to and 

receive messages from the other subject. At the beginning of every block, you will be 

able tell the other subject the percentage of time you plan to choose orange in the next 
block. You will be able to tell the other subject a plan for choosing orange some 

percentage of time if the signal position is above or below some number of your 

choosing. Once you have entered and submitted your answers, your message will be sent 

to the other subject and you will receive the other subjects’ message. You will see on the 

right-hand side of your screen both your most recent message and the other subject’s 

most recent message throughout the next block. At the end of every block you will 

observe your most recent message as well as the other subject’s most recent message 

while completing your next message for the subsequent block. You will have the option 

of submitting the same message as before or submitting a different message. Below are 

some screenshots to illustrate. 
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Figure 4: Screenshot of initial message screen at the beginning of the first block  

 

 
 

 

Figure 5: Screenshot of messages sent and received at the beginning of the first block 
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Figure 6: Screenshot of a subject at the end of a block 

 

 
 

Figure 6: Screenshot of a subject at the end of a block if changing message 

 

 

Ground Rules 
Please wear the headphones provided throughout the experiment, except when instructed 

to do so by the experimenters. We also ask that you disconnect your cellphones 

throughout the duration of the experiment. 
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