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Abstract

This paper experimentally investigates whether subjects learn, from their limited experi-

ences, something about the underlying relationship between their nominal voting weights and

expected payoffs in weighted voting games. In each session of the experiment, subjects are

repeatedly asked to choose one of two 4-player weighted voting games where three out of four

players are fictive. After each choice, payoffs for players are determined automatically accord-

ing to a theory of voting power. We, however, vary the amount of feedback about the payoffs

that subjects receive after each choice. The choice problem of games is changed to another

one in the second part of the session. The main findings are as follows. (1) The fraction of

subjects who chose the weighted voting games that generate higher expected payoffs increased

even in the treatment without any immediate feedback on realized payoffs. (2) A statistically

significant evidence of “meaningful learning” between two choice problems was observed only

in the treatment without immediate feedback.
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1 Introduction

This paper experimentally investigates whether subjects learn something about the underlying prop-

erties of a class of strategic situations (games) and whether they transfer what they have learned

from their limited experiences in a set of games to another set of games within the same class.

We examine weighted voting games as the class of games; thus our question is, more concretely,

whether subjects can learn, from their limited experiences, about the underlying relationship be-

tween their nominal voting weights and actual expected payoffs derived from a theoretical power

index in weighted voting games and generalize what they have learned in a game to similar but

different one.

We begin with a brief survey of the literature on learning experiments. For many years, experi-

mental studies on learning in games have been focused on whether subjects learn how to play games

and how such learning proceed.1 To better understand the dynamics of observed behavior of sub-

jects, various models of learning have been proposed, such as, reinforcement learning (e.g., Erev

and Roth, 1998), belief-based learning (e.g., Cheung and Friedman, 1997), and the experienced

weighted attraction (EWA) learning (Camerer and Ho, 1999). Some researchers, however, reported

that many learning models including the ones mentioned above failed to replicate observed behavior

in repeated games.2 New ideas are thus currently being examined among researchers.3

In comparison to the large amount of studies on learning how to play games and its process,

only a few studies have been done to investigate “cross-game learning” (Cooper and Kagel, 2003)

or “learning transfer” (Cooper and Kagel, 2008; Haruvy and Stahl, 2009), i.e., whether subjects

learn about the underlying properties of games and generalize what they have learned in a situation

to similar but different situations. In terms of the depth of what is learned, this higher-order concept

of learning should be distinguished from learning to make choices that generate better outcomes in

a given situation, and thus it is referred to as “meaningful learning” by Rick and Weber (2010).4

1This strand of literature is different in its objective from the literature on learning theory in games. See, e.g., Hart
(2005) and the references therein for the theoretical literature, where authors mainly investigate the convergence proper-
ties of learning models to various equilibria.

2Arifovic et al. (2006) showed that many models of learning failed to replicate observed human behavior in such
games as a repeated battle of sexes game. Erev et al. (2010) reported that the standard learning models based on the
evolution of attraction did not perform well in predicting how people behave in market entry games.

3Marchiori and Warglien (2008) proposed to incorporate “regret” into their neural network-based learning model,
showing that it better replicated the observed behavior than both EWA and neural network-based learning models without
regret. Hanaki et al. (2005) and Ioannou and Romero (2014) extend reinforcement learning model and EWA learning
model, respectively, to allow players to learn which strategies to use in repeated games. Arifovic and Ledyard (2012)
report that their “individual evolutionary learning” model can capture most of the stylized results in public good game
experiments.

4Dufwenberg et al. (2010) call this type of learning “epiphany,” and investigate it in two race to X games (which they
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Rick and Weber (2010) studied p-Beauty contest games (Ho et al., 1998) and found that with-

holding feedbacks, which do not produce any learning at all in many learning models, promotes

meaningful learning in the sense that subjects learn to perform iterated dominance.5 Neugebauer

et al. (2009), on the other hand, reported that subjects did not learn to play their dominant strategy

in a game of voluntary provision of public goods when they did not receive any feedback. Our aim

is to study this deeper learning in weighted voting games.6

Weighted voting, which gives different numbers of votes to different voters, is one of the most

popular collective decision-making systems in many contexts: stockholder voting in corporations,

multi-party legislatures, and so on. The relationship between the nominal voting weight and real

voting power, however, is often complex. In the study of the Council of Ministers in the European

Economic Community, Felsenthal and Machover (1998, pp.164-165) reported that it must have

been difficult for policy makers who designed the system to see through the underlying relationship

between the nominal voting weights and actual voting powers.

To better understand this complex relationship inherent in weighted voting, recently, researchers

have turned to experimental study to complement more traditional empirical analyses. This is be-

cause many features that are unobservable in actual practice can be controlled in experiments. Mon-

tero et al. (2008), Aleskerov et al. (2009), Esposito et al. (2012), and Guerci et al. (2014) conducted

the experiments in which subjects decide how to allocate fixed amount of resources among them

via weighted voting. These experiments are under a cooperative game environment because they

did not specify explicitly the dynamic structures of negotiations among the subjects.7 These studies

call “game of X”). In a race to X game, two players alternatively put 1 to M coins in the same hat which is initially
empty. The game ends when there are X coins in the hat, and the player who has put the Xth coin into the hat is the
winner. Both M and X are common knowledge. This game has a dominant strategy and can be solved by using backward
induction. In the version studied by Dufwenberg et al. (2010), X were either 6 or 21, and M was 2. Dufwenberg et al.
(2010) hypothesized that it is easier to realize the dominant strategy for this game when X is small, and once a subject
realizes the dominant strategy, s/he will apply it every time playing the same class of games. They found, indeed, that
those subjects who experienced playing race to 6 before playing race to 21 played the latter perfectly more often than
those who started with race to 21. Learning to play race to X is also studied experimentally by Gneezy et al. (2010) who
report that subjects learn to play the dominant strategy as they repeat the same game. Carpenter et al. (2013) report the
correlation between subjects’ cognitive ability, measured by Raven’s Progressive Matrix test (described in Raven, 2008,
for example), and their frequency of playing the dominant strategy in race to 5, 10, and 15 games with M = 3 against
best-responding computers.

5Rick and Weber (2010) also found that asking subjects to explain the reason for their behavior promotes meaningful
learning in the presence of feedback.

6Cooper and Kagel (2003, 2008) examined signaling games and found that letting subject to play in a team promotes
“meaningful learning” or what they call “learning transfer.” Haruvy and Stahl (2009, 2012) combined rule-based learning
(Stahl, 1996) and EWA learning models to explain observed behaviors in the laboratory experiments in which subjects
play a sequence of 4 × 4 symmetric normal form games that are dominance solvable. They found that a model that
relabels the actions based on the steps of eliminating dominated strategies, which assumes that agents understand the basic
property – dominance solvability – of the game, allows the model to better capture the observed behavior of subjects.

7Fréchette et al. (2005a,b), Drouvelis et al. (2010), and Kagel et al. (2010), on the other hand, conducted their ex-

3



found that an experimental measure of “a posteriori” voting power differs dramatically from the the-

oretical measures of “a priori” voting power such as Banzhaf (1965), Shapley and Shubik (1954),

and Deegan and Packel (1978). The experiential measure of voting power is defined as the average

payoff a voter has obtained during the experiment.

Those remarkable discrepancies between theoretical predictions and experimental observations

calls for a better behavioral theory of weighted voting games including how and what subjects

learn while playing these games. In particular, one can ask whether subjects learn something about

complex underlying relationship between the nominal voting weights and voting power. In this

paper, we take a small step toward answering this question. As shown by Esposito et al. (2012),

trying to investigate what subjects learn when other subjects are also learning result in too complex

a task for subjects to allow for very meaningful inferences. We thus simplify the experimental

protocol drastically by abstracting away the issue of subjects learning how to play the game while

other subjects are also doing the same. And we focus on whether subjects learn to become a member

of a committee that generates a higher expected payoff for themselves. In our experiment, payoffs

are automatically generated according to a theory of voting power as we describe below.

As a result of this drastic simplification, our subjects face two-armed bandit problems with

contextual information related to payoffs, and simply choose a weighted voting game itself out of the

two options. These two options share the number of voters, the total number of votes, the quota (the

minimum number of votes required for a proposal to be adopted), and the number of their own votes.

Only difference between the two is, thus, the votes apportioned among the other voters, although

they are all fictive.8 Payoffs for subjects from choosing one of the two options (committees) are

determined stochastically based on the theory of voting power developed by Deegan and Packel

(1978) which will be explained in the Section 2.

We have three treatments with different amounts of feedback subjects receive immediately af-

ter their choice; no feedback, partial feedback, and full feedback. In the no-feedback treatment,

subjects are not given any information about the payoffs they obtain after each choice. Thus, only

information they can use to make their choices is the description of how votes are apportioned across

four players in two committees. In the partial-feedback treatment, after each choice, subjects are

given information about their own payoffs for the option they have chosen (and not for the option

periments in non-cooperative game environments with explicit dynamic structures of negotiations based on variants of a
legislative bargaining models.

8The standard two-armed bandit problems do not provide subjects with any contextual information that is related to
the payoffs for the problem they face. See, for example, experiments by Meyer and Shi (1995), Banks et al. (1997), and
Hu et al. (2013). Thus, our problems can be called as an extended two-armed bandit problem.
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they have not chosen), which matches the feedback given in the standard two-armed bandit prob-

lems. In the full-feedback treatment, after each choice, subjects are given information about the

payoffs for all the relevant voters again only for the option they have chosen and not for the option

they have not chosen.

Standard models of learning based on the evolution of attraction (e.g., reinforcement learning

and EWA learning models) cannot be used to make predictions about how subjects learn to choose

the option with the higher expected payoff in no-feedback treatment. In fact, we are not aware of

any models of learning that allow us to study learning without any explicit feedback.

We found that the fraction of subjects who chose the option with a higher expected payoff

increased even without immediate feedback on payoffs. Further, we had a statistically significant

evidence of “meaningful learning” between two choice problems in the treatment without immediate

feedback but not in the treatments with immediate feedbacks on payoffs.

The rest of the paper is organized as follows. Section 2 describes our experimental design.

Section 3 presents and discusses the experimental results. Conclusions are offered in Section 4.

2 Experimental design

Let N = {1, 2, 3, 4} be the set of players. A four-player weighted voting game is represented by

[q; v1, v2, v3, v4], where q is the quota (the minimal number of votes required for a proposal to be

adopted) and vi is the voting weight (number of votes) player i ∈ N has. We hereafter call a four-

player weighted voting game simply a game. In each period, each subject, who acts as player 1

and is informed clearly that three other players are fictive, chooses one of the two games that have

the same total number of votes, the same quota, and the same number of own votes. For example,

in one period, a subject chooses between [14; 5, 3, 7, 7] and [14; 5, 4, 6, 7], in another period, the

subject chooses between [6; 1, 2, 3, 4] and [6; 1, 1, 4, 4]. In the former, the subject receives 5 votes

whichever the choice he or she makes, and similarly in the latter, the subject receives 1 vote.

In our experiment, the payoff a subject obtains from his or her choice is stochastically deter-

mined according the idea behind an index of voting power proposed by Deegan and Packel (1978),

and not according to the outcomes of four subjects actually negotiating how to divide the resources

in the chosen committee. We have decided to rely on this clear and relatively simple theory to

generate payoffs in order to avoid the complication resulting from subjects trying to learn which

committee to choose while other subjects learning how to negotiate within each committee. Cason
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and Friedman (1997) point out a similar complication in their market experiments and introduce

sessions in which subjects interact with “robots” that follow the equilibrium strategy. In addition

to this complication, the existing experimental results (Montero et al., 2008; Aleskerov et al., 2009;

Esposito et al., 2012; Guerci et al., 2014) provide us with little guidance as to what would be the

expected payoffs for each member of a committee when we let subjects to play a weighted voting

game. This lack of clear guidance makes it difficult to design binary choice problems where one

of the options generates a higher expected payoff than the other without automatically generating

payoffs based on a theory.

Let us now describe the payoff generating process we have employed. To do so, we first need

to define a few terms. A nonempty subset S of N is called a coalition, and it is called a winning

coalition if
∑

i∈S vi ≥ q; otherwise, it is called a losing coalition. A minimum winning coalition

(MWC) is a winning coalition such that a deviation of any member of the coalition turns its status

from winning to losing. In constructing an index of voting power, Deegan and Packel (1978) as-

sumed that (1) a winning coalition will always be minimum, (2) all the MWCs are equally likely

to be formed, and (3) within each MWC, the resources (120 points in our experiment) will be di-

vided equally among its members. Thus, for example, in the case of [14; 5, 3, 7, 7], possible MWCs

expressed in terms of the number of votes each player has are (5, 3, 7), (5, 3, 7), and (7, 7). Thus,

player 1 may obtain 1/3 of the total resources 2/3 of the times (when a MWC (5, 3, 7) is realized)

and zero in remaining 1/3 of the times (when MWC (7, 7) is realized).

Our choice of using the idea from Deegan and Packel (1978) in generating payoffs is mainly

driven by the ease of its experimental implementation. Whether subjects can learn the relationship

between the nominal voting weights and actual voting powers based on the other power indices

defined by Banzhaf (1965) or Shapley and Shubik (1954) is an interesting question to be investigated

in the future.

This choice of payoff generating process led us to choose four-player weighted voting games,

instead of simpler three-player weighted voting games. Because four-player games generate non-

trivial sets of minimum winning coalitions, while three-player games do not. We do not explain this

underlying payoff generating mechanism to our subjects, and simply inform them that payoffs are

determined based on a theory of weighted voting games.9

Each session consists of 60 periods. Subjects face the same binary choice problem for the first

40 periods and then another binary choice for the next 20 periods. One can thus consider this

9See Appendix A for an English translation of the instruction.
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Problem Choice 1 (Expected payoff) Choice 2 (Expected payoff)
A [14;5, 3, 7, 7] (120 × 2/9 ) [14;5, 4, 6, 7] (120 × 1/4)
B [6;1, 2, 3, 4] (120 × 1/9) [6;1, 1, 4, 4] (120 × 2/9)
C [14;3, 5, 6, 8] (120 × 2/9) [14;3, 6, 6, 7] (120 × 1/4)
D [9;1, 3, 5, 6] (120 × 1/9) [9;1, 2, 6, 6] (120 × 2/9)

Table 1: Four binary choice problems examined in the experiment. The number of votes allocated
to our subjects are shown in bold. Note that for all the problems, Choice 2 has a higher expected
payoff for our subjects.

problem as subjects facing two-armed bandit problems with a hint about hidden payoff generating

mechanism. We are interested in (a) whether our subjects learn to choose the option with the higher

expected payoff (henceforth, the better option), and, if they do so in the first 40 periods, (b) whether

subjects who have experienced one choice problem choose the better option more frequently when

they face a new choice problem than those subjects facing the same problem without such an expe-

rience.

We examined the set of binary choice problems shown in Table 1. In each committee, our

subjects receive the number of votes assigned for player 1 that are shown in bold. Note that in terms

of the payoffs (not only in terms of expected payoffs but also the set of all the possible payoffs)

Problem A and C are the same. The same is true for Problem B and D. Our subjects face one of the

following four sequences of choice problems in the order indicated by the arrow: A → B, B → A,

C → D, or D → C. The first 40 periods are based on the first choice set, and the last 20 periods

are based on the second choice set.

2.1 Three feedback treatments

We consider three feedback treatments: (1) no-feedback, (2) partial-feedback, and (3) full-feedback.

In the no-feedback treatment, subjects are not given any information about realized payoffs after

each choice. Thus, stimulus-response learning models that are based on the realized payoffs make

no prediction about whether learning will take place in this treatment. In the partial-feedback treat-

ment, after each choice, subjects are given information about the payoffs he or she receives but not

the payoffs of the other (fictive) voters for the option they have chosen, but not for the one they

have not chosen. This treatment is introduced because it is the closest to the feedback condition

in the standard two-armed bandit problems in which subjects are informed only about the payoff

they obtained after each choice. Our subjects will observe that the same choice generates varying
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payoffs, and the frequencies of receiving various payoffs differ between two choices. Stimulus-

response learning models will predict that some learning would be observed in this treatment. In the

full-feedback treatment, after each choice, subjects are given information about the payoffs for all

the (fictive) voters. Just as in partial-feedback treatment this information is given only for the option

they have chosen. Because under the full-feedback treatment, subjects observe that (a) payoffs are

equally allocated among a subset of committee members and that (b) such subsets of committee

members change from time to time, we expect the learning of the underlying relationship between

the payoffs and votes to be much easier in the full-feedback treatment than in two other treatments.

In order to keep the amount of time given to subjects for (a) making choice, and (b) thinking

with or without feedback constant across three feedback treatments, we assign 30 seconds time limit

for the choice stage and 10 seconds in the feedback stage. If a subject does not make a choice within

30 seconds of the choice stage, he or she receives zero point for that period. In this case, the subject

receives the special feedback, regardless of the feedback condition in the feedback stage, that he or

she has obtained zero point for the period because he or she did not make a choice. The zero point

in case of no choice was clearly written in the instruction.

If a subject makes a choice early, say within the first 10 seconds of the choice stage, a waiting

screen is shown until all the subjects in the session make their decisions. If all the subjects make their

choices before the end of the 30 seconds time limit, every subject enters the feedback stage. In the

feedback stage, under the no-feedback condition, 10 seconds of waiting screen with a message that

reads “Please wait until the experiment continues” is shown. In full or partial feedback treatments,

the relevant payoff information is shown for 10 seconds.

In addition to the show-up fee of 1000 yen, subjects are paid according to the total points they

receive over 60 periods with an exchange rate of 1 point = 1 yen. We pay our subjects in this way just

as in other bandit experiments (see, e.g., Meyer and Shi, 1995; Hu et al., 2013), and not based on a

randomly chosen period, because we want our subjects to learn to choose the option with a higher

expected payoff, and not the option that can generate the highest possible payoff. The experiment

lasted about 60 minutes including the instruction and post-experiment questionnaire. On average,

our subjects earned about 2500 yen (about 25 U.S. dollars at the exchange rate around the date of

the experiment.)

8



(a) A → B (b) B → A
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(c) C → D (d) D → C
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Figure 1: Time series of the fraction of subjects who have chosen “correct” option. Black: No-
feedback, Red: Full-feedback, Blue: Partial-feedback.

3 Results

A computerized experiment (developed with “z-Tree” Fischbacher, 2007) was conducted at the

ISER experimental economics laboratory at Osaka University (Japan) and the experimental labora-

tory at University of Tsukuba (Japan) between June and November 2014. 360 subjects who have

participated to our experiments were undergraduate students recruited from all over the campus.

Neither third nor fourth-year students who major in economics participated in the experiment.10

3.1 Overview of the data

Figure 1 shows the time series of the fractions of subjects who chose the better option (i.e., the

option that gives a higher expected payoff) in each of the four sequences of choice problems we

examined. Three feedback treatments are shown in different colors: Black; no-feedback, Red: full-

feedback, Blue: partial-feedback. The dotted vertical line in each panel separates the two choice

problems, i.e., the one before period 40 and the another one after period 41.

10Out of 360 subjects, 240 subjects were at Osaka and remaining 120 subjects were at Tsukuba. 4 sequences of two
problems × 3 feedback treatments = 12 sessions in total. Each session consisted of 20 subjects in Osaka and 10 subjects
in Tsukuba. Out of these 360 subjects, 54 of them failed to make a choice within the time limit at least once during 60
periods.
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Comparing panel (a) and (b) as well as (c) and (d) of the figure, we observe that more subjects

have chosen the better option from the beginning in Problem A and C than in B and D. The fractions

of subjects who have chosen the better option in period 1 are 0.74 for Problem A and 0.67 for

Problem C, while they are 0.34 for Problem B and 0.24 for Problem D. Here we are pooling the

data from three feedback treatments because at the time of making the choice in period 1, no subject

has received any feedback related to payoffs. In addition, we do not reject the null hypothesis that

the fractions of subjects choosing the better option in the first period are the same across the three

feedback treatments in none of the 4 problems. P-values are 0.338, 0.464, 0.646, and 0.466 for

Problem A, B, C, and D, respectively, based on Kruskal-Wallis (KW) test. The null hypothesis that

these fractions are the same across four problems is rejected (p < 0.001, KW). We do not, however,

reject the null hypothesis that the fractions for Problem A and C are the same (p = 0.255, Mann-

Whitney, MW, test, two-tailed). The same is true for the fractions for Problem B and D (p = 0.146,

MW).

Observation 1. Problem A and C were easier for subjects to figure out the better option than

Problem B and D from the beginning of the experiment.

A possible reason for this observation, based on the answers to the questionnaire about the

reason for their choices at the end of the experiment, is that subjects quickly identified the cru-

cial difference between the two options in Problem A and C. That is while the possibility of two

large voters (voter 3 and 4 who have more votes than others) alone forming the winning coalition

exists in one of the option ([14; 5, 3, 7, 7] or [14; 3, 5, 6, 8]), the same is not true for the other op-

tion ([14; 5, 4, 6, 7] or [14; 3, 6, 6, 7]). Subjects avoided the former option because they intuitively

thought such a possibility must be dis-advantageous for themselves. For Problem B and D, on the

contrary, there is no such an obvious difference in two choices because the two large voters can form

a winning coalition by themselves in both choices. As a result, our subjects had to explore more to

learn to make better choices.

Indeed, in Figure 1, we observe, for Problem B and D (shown in panels (b) and (d), respectively),

an upward trend in the fraction of subjects who chose the better option in the first 40 periods. There

is no such a trend in Problem A and C (shown in panel (a) and (c), respectively), however. This

absence of upward trend in Problem A and C is probably due to many subjects having figured

out the better option from the very beginning. It should also be noted that we do not observe

much differences among three lines (corresponding to our three feedback treatments) in any of the

four problems. Regardless of the differences in the payoff related feedbacks, the dynamics of the
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fractions of the subjects choosing the better options show the similar dynamics. Exceptions for this

similarity can be identified in the following 4 cases. (1) Between period 41 and 60 in panel (b)

where the line for the full-feedback treatment is clearly below the other two. (2) Between period

20 and 40 in panel (c) where the line for partial-feedback treatment is clearly below the other two.

(3) Between period 5 and 15 of panel (d) where line for no-feedback treatment is below the the

other two. And (4) between period 41 and 60 in panel (d) where line for no-feedback treatment

is clearly above the other two. This final case is remarkable because it suggests that subjects who

have received no payoff related feedback after each choice have learned to choose the better option

more frequently than others who have received such feedback. Let us proceed to further investigate

learning within and across problems.

3.2 Learning to choose the better option

To better analyze choices made by subjects and how their choices change over time, let us define,

for each subject, a measure of his/her frequency of choosing the better option in various block of 5

periods. Namely, let FRi
b be the fraction of bth block of 5 periods, in which subject i has chosen the

better option. For example, FRi
1 is the (normalized) number of times subject i has chosen the better

option between period 1 and 5. FRi
2 or FRi

8 represent those between period 6 and 10 or period 36

and 40, respectively.

Based on FRi
b, we can define the change in the relative frequency of choosing the better option

between two blocks of 5 periods, f and g, as

∆FRi
f,g = FRi

f − FRi
g

In this subsection, we focus on ∆FRi
2,1 and ∆FRi

8,1. The former is the change in the (normalized)

number of periods in which a subject chose the better option in the second 5 periods (periods 6-10,

b = 2) and the first 5 periods (periods 1-5, b = 1) of facing a problem, while the latter is the same

change between the last 5 periods (period 36-40, b = 8) and the first 5 periods. We focus on these

two changes to investigate whether differences in the amount of the feedback subjects receive have

different impacts in the learning in a short (∆FRi
2,1) and a long (∆FRi

8,1) time horizons.

Figure 2 and 3 show the distribution of ∆FRi
2,1 and ∆FRi

8,1, respectively, for Problem A (panel

a), B (panel b), C (panel c) and D (panel d) for three information treatments: Black: No-feedback,

Red: Full-feedback, Blue Partial-feedback. For each game and feedback treatment, we test the
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(a) Problem A (b) Problem B
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Full-feedback p = 0.584 (SR)
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Figure 2: CDF of ∆FRi
2,1, the change in the (normalized) number of periods in which a subject

chose the better option in the second 5 periods (periods 6-10, b = 2) and the first 5 periods (periods
1-5, b = 1) for Problem A (panel a), B (panel b), C (panel c) and D (panel d). Black: No-feedback,
Red: Full-feedback, Blue: Partial-feedback. P-values for within treatment test (one-tailed, signed-
rank test (SR)) and across treatments test (Kruskal-Wallis (KW)) are reported.

null hypothesis ∆FR2,1 = 0 or ∆FR8,1 = 0 (with the alternative hypothesis ∆FR2,1 > 0 or

∆FR8,1 > 0 with an assumption that learning will improve choices) using one-tailed-singed-rank

test (SR). P-values are reported in the figure. We also test the null hypothesis that median ∆FR2,1s

or ∆FR8,1s are the same across the three feedback treatments by Kruskal-Wallis test.

Panel (a) and (c) of both Figure 2 and Figure 3 show that for Problem A and C, which had higher

FR1 compared to Problem B or D, the distribution of ∆FR2,1 and ∆FR8,1 are not significantly

greater than zero in most of the cases. Except for the full-feedback treatment of Problem C, we do

not reject the null hypothesis that the median ∆FR2,1 = 0 or ∆FR8,1 = 0. The absence of the

significant evidence on learning (to choose the better option) in Problem A and C is better under-
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(a) Problem A (b) Problem B
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p = 0.024 (KW)

(c) Problem C (d) Problem D
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No-feedback p < 0.001 (SR)
Partial-feedback p = 0.004 (SR)
Full-feedback p = 0.218 (SR)

p = 0.054 (KW)

Figure 3: CDF of ∆FRi
8,1, the change in the (normalized) number of periods in which a subject

chose the better option in the last 5 periods (periods 36-40, b = 8) and the first 5 periods (periods
1-5, b = 1) for Problem A (panel a), B (panel b), C (panel c) and D (panel d). Black: No-feedback,
Red: Full-feedback, Blue: Partial-feedback. P-values for within treatment test (one-tailed, signed-
rank test (SR)) and across treatments test (Kruskal-Wallis (KW)) are reported.

stood in light of Observation 1 above. Because subjects have some how figured out the better option

without much trying, they did not change their choices significantly in the subsequent periods.

For Problem B, on the other hand, we reject the null hypotheses that ∆FR2,1 = 0 (panel (b) of

Figure 2) in all the three feedback treatments. The same is true for ∆FR8,1 (panel (b) of Figure 3).

Thus, more subjects learn to choose the better option more frequently relatively quickly (even in the

first 10 periods) regardless of the feedback treatments. Indeed, we do not reject the null hypothesis

that ∆FR2,1 are significantly different across three feedback treatments (p = 0.151,KW ). Com-

paring panel (b) of Figure 2 and Figure 3, however, one can notice that distributions of ∆FR8,1

lie towards the right of those for ∆FR2,1, suggesting that more subjects indeed learn to choose the
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better option more frequently when given more time to learn.

For Problem D, ∆FR2,1 and ∆FR8,1 are both significantly larger than zero only in partial

feedback treatments. For full-feedback treatments, both ∆FR2,1 and ∆FR8,1 are not significantly

greater than zero. And, for no-feedback treatment, the latter is significantly greater than zero while

the former is not. Although the reason for the absence of the significant evidence of learning under

full-feedback treatment for this problem is not clear from our data, the significant difference of

∆FR2,1 between partial- and no-feedback treatments (p = 0.082, MW) suggests that, for this

problem, receiving a feedback about own payoffs facilitated more subjects to learn to make the

better choice more frequently from earlier rounds. However, there is no significant difference of

∆FR8,1 between no- and partial-feedback treatments (p = 0.243, MW). Thus, eventually, more

subjects learn to choose the better option more frequently even without any feedback. Based on

these results we can make the following observations.

Observation 2. In Problem B and D, subjects learn to choose the option with a higher expected

payoff even without any immediate feedback regarding the payoffs.

3.3 Meaningful learning and learning transfer

Let us now investigate whether “meaningful learning” or “learning transfer” is observed in our data,

and whether differences in the payoff related feedback had a significant effect on the outcomes. We

first compare the initial fraction of subjects who have chosen the better choice when they have faced

a problem for the first time without any prior experience in a similar problem (period 1) versus with

an experience in a similar problem (period 41). For example, for Problem A, we are comparing the

fraction of subjects who have chosen the better option in period 1 of sessions with A → B and

period 41 of sessions B → A.

Table 2 summarizes these fractions for four problems and three feedback treatments. Let us first

compare the fraction of subjects with an experience in another problem choosing the better option

in period 41 when they face a new problem. Except for Problem B (p < 0.001, KW), there was

no significant difference across three feedback treatments (p-values are 0.878, 0.504, and 0.249 for

Problem A, C and D, respectively, based on KW test). This suggests, as if, the difference in the

feedback in the first 40 periods did not have significant effect on their first choice facing a different

problem. This insignificant difference is a reason for us to present the result by pooling the outcome

in the three treatments in Table 2 in addition to listing the result for each treatment separately.

Now let us compare the fractions of correct choices between those with experience (period
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Table 2: Fraction of subjects choosing the better option.

Problem A Pooled (90) No-fb(30) Partial-fb (30) Full-fb (30) P-value (KW)
Period 1 67 20 25 22 0.337

Period 41 48 15 16 17 0.878
p-value (MW) 0.003 0.197 0.014 0.183

Problem B Pooled (90) No-fb(30) Partial-fb (30) Full-fb (30) P-value (KW)
Period 1 31 9 13 9 0.464

Period 41 39 21 8 10 p < 0.001

p-value (MW) 0.223 0.002 0.183 0.776

Problem C Pooled (90) No-fb(30) Partial-fb (30) Full-fb (30) P-value (KW)
Period 1 60 19 22 19 0.466

Period 41 64 23 22 19 0.504
p-value (MW) 0.522 0.260 0.992 0.993

Problem D Pooled (90) No-fb(30) Partial-fb (30) Full-fb (30) P-value (KW)
Period 1 22 8 5 9 0.672

Period 41 52 21 16 15 0.249
p-value (MW) <0.001 <0.001 0.003 0.115

41) and without experience (period 1). For problem C, these fractions are very similar both at the

aggregate (pooling three treatments) and for looking at each treatment separately. Two-tailed Mann-

Whitney tests (MW) do not reject the null hypothesis that there is no difference between subjects

with and without experiences with another problem.

For problem A, however, the fraction of subjects choosing the better option is significantly lower

for the experienced subjects (period 41) compared to the inexperienced subjects (period 1). This is

particularly so for the partial feedback case. It seems as if the experience in facing and learning

to choose the better option in Problem B made it more difficult for these subjects to initially pick

the better option in Problem A. Although we can only speculate about the possible reasons for this

negative effect of experience, the following seems to be plausible. Subjects who faced problem

B were choosing between [6; 1, 2, 3, 4] and [6; 1, 1, 4, 4] for 40 periods. In these 40 periods, they

have learned that latter option gives them a higher payoff on average. Note that two large members

of the committee have the same number of votes (4) in the latter option. Remembering this fact,

when they faced problem A and asked to choose between [14; 5, 3, 7, 7] and [14; 5, 4, 6, 7], they have
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chosen the former because two large members of the committee have the same number of votes in

this option. We, however, need to investigate, possibly by means of mouse-tracking or eye-tracking

devise, which information subjects are paying attention to before making their choices in order to

test this hypothesis. And thus, we leave this for future research.

The positive and significant effect of the experience (meaningful learning) is observed in Prob-

lem B and D. In these problems, especially under no-feedback treatment, significantly more expe-

rienced subjects (who have faced Problem A or C for 40 periods) have chosen the better option

from the beginning compared to inexperienced subjects. Note that, unlike between Problem A and

B discussed above, there is no obvious similarities in their options between Problem C and D. Fur-

thermore, it seems that the positive effect of the prior experience is stronger when subjects received

less payoff-related feedback. Namely, the effect of experience is statistically significant only under

no- (p = 0.002 and p < 0.001 for problem B and D) and partial-feedback treatments (p = 0.183 and

p = 0.003 for Problem B and D), and not under full-feedback treatment (p = 0.776 and p = 0.115

for Problem B and D). P-values are based on two-tailed Mann-Whitney test.

We complement the analysis by comparing the fraction of the first 5 periods of each problem in

which subjects chose the better option between two groups of subjects: those who faced the problem

for the first time (thus in periods 1-5, FRi
1) versus those who have experienced a different problem

for 40 times before facing the problem (thus in periods 41-45, FRj
9). For example, for Problem A,

we compare FRi
1 for those in A → C sessions and FRj

9 for those in C → A sessions. If there is

a significant evidence on meaningful learning, we should observe FRj
9 to be significantly greater

than FRi
1.

The results are shown in Figure 4 in which for each choice problem and feedback treatment, the

distributions FRi
1 (black) and FRj

9 (gray) are shown. We test the null hypothesis that the median

FRi
1 = FRj

9 against the alternative FRi
1 ̸= FRj

9 using the Mann-Whitney test (two-tailed). P-

values for this tests are also reported in the figure.

In most of the panels of Figure 4, we do not observe much differences between the two distribu-

tions. There are three exceptions. For Problem B, C and D under no-feedback treatment, we observe

that the distribution for FRj
9 (shown in gray) lies on the right of that for FRi

1 (shown in black). The

two-tailed Mann-Whitney test shows that the median FRj
9 is significantly different (in fact, higher)

from FRi
1 (p = 0.049 for Problem B, p = 0.052 for Problem C, and p < 0.001 for Problem D). Un-

der partial- or full-feedback treatments of the same problem, however, such significant differences

were not observed.
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(c) Problem C
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(d) Problem D
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Figure 4: CDF of FRi
1 (black) and FRj

9 (gray) for four problems in three feedback treatments: No-
feedback (left), Partial-feedback (middle), and Full-feedback (right). Note that FRi

1 is the fraction
of the correct choice in the first 5 periods when subject i faced the choice problem for the first time,
and FRj

9 is that when the subject j faced the choice problem after experiencing another choice
problem. P-values for two-tailed Mann-Whitney test are reported.
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These results suggest that, in two of our extended binary choice problems, withholding immedi-

ate payoff related feedbacks stimulated “meaningful learning” just as Rick and Weber (2010) found

for dominance solvable games. Together with the result based on the comparison of choices in

period 1 and 41, we can summarize the results of this subsection as follows.

Observation 3. For Problem B and D, subjects who have experienced Problem A and C, respec-

tively, before facing the problem under no-feedback treatment have chosen the option with a higher

expected payoff much more frequently in the first five periods than those without such an experience.

4 Conclusion

In this paper, we experimentally investigated whether subjects learn, from their limited experiences,

something about the underlying relationship between their nominal voting weights and actual voting

powers (expected payoffs) in weighted voting games. To simplify the learning problem as much as

possible, we converted the problem into an extended two-armed bandit problem in which subjects

are asked to choose between two committees that divide the resources among four (hypothetical)

members.

We found that, in some problems, our subjects could learn to choose the committee that results

in a higher expected payoff for themselves more frequently even without immediate feedback on

payoffs. In addition, we have a statistically significant evidence of meaningful learning or learning

transfer between two choice problems only in the treatment without immediate feedback. Our

results replicate, at least in some of the choice problem we have experimented with, the results

obtained by Rick and Weber (2010) regarding the learning in the absence of immediate payoff

related feedbacks.

In our experiment, the payoffs were generated based on the assumption made by Deegan and

Packel (1978) in creating their index of voting power. As is well known, there are other indices

on voting power such as Banzhaf (1965) and Shapley and Shubik (1954). It will be an interesting

future research to experimentally investigate which of these indices are more intuitive for subjects

to learn.
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Appendix

A Instructions

You will be repeatedly asked to make a simple choice between two options.

Imagine you need to represent your interests in a voting committee. This committee decides

how to divide 120 points among its members. The committee has three other members, and each

member has a predetermined number of votes, which may be different from one another. A decision

will be made in this committee only when a proposal receives the pre-determined required number

of votes. This required number of votes will be indicated to you. If more than one proposals are

made in the committee, each member cannot vote for multiple proposals by dividing the votes she

or he has. A member can vote for only one proposal, and when s/he votes, all the votes s/he has will

be cast for the proposal.

The choice you are asked to make is, between two possible committees, which committee you

prefer to belong to. The number of votes each of the four member of the committee has (including

you) as well as the required number of votes for a proposal to be approved will be shown to you.

The number of votes you have will always be indicated with the label YOU.

A.1 Full-feedback treatment

There will be total of 60 rounds. In each round, you have 30 seconds to make your choice between

the two committees. If you do not make any choice during the 30 second in one round, you will ob-

tain zero point for the round. Once choice is made, for each round of choice, the chosen committee

will automatically allocate 120 points among the four members. The outcomes may vary from one

period to another, but they are based on a theory of decision making in a committee. Once allocation

is made, you will immediately see the resulting allocation. At the end of the experiment, you will

be paid according to your total earnings during the 60 rounds, with an exchange rate of 1 Yen = 1

point.

If you have any question, please raise your hand.

A.2 No-feedback treatment

There will be total of 60 rounds. In each round, you have 30 seconds to make your choice between

the two committees. If you do not make any choice during the 30 second in one round, you will
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obtain zero point for the round. For each round of choice, the chosen committee will automatically

allocate 120 points between the four members. The outcomes may vary from one period to another,

but they are based on a theory of decision making in a committee. You will not see the resulting

allocation after each round. You will, however, will be informed about the total point you have

obtained during the 60 rounds at the end of the experiment. At the end of the experiment, you will

be paid according to your total earnings during the 60 rounds, with an exchange rate of 1 Yen = 1

point.

If you have any question, please raise your hand.

A.3 Partial-feedback treatment

There will be total of 60 rounds. In each round, you have 30 seconds to make your choice between

the two committees. If you do not make any choice during the 30 second in one round, you will

obtain zero point for the round. For each round of choice, the chosen committee will automatically

allocate 120 points among the four members. The outcomes may vary from one period to another,

but they are based on a theory of decision making in a committee. Once allocation is made, you will

immediately see the number of points which has been allocated to you. The allocations for the rest

of the members will not be notified to you. At the end of the experiment, you will be paid according

to your total score, with an exchange rate of 1 Yen = 1 point.

If you have any question, please raise your hand.
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